Promoting water-use efficiency with Responsible Al

Blake Vernon

One-U RAI Postdoctoral Fellow University of Utah

Problem & Stakes

Goal: use Responsible AI to estimate soil moisture and support efficient irrigation in agriculture.

Drought in the Western United States, 2000-2025

Source: NOAA National Integrated Drought Information System

Data & Context

Sources: Federally funded monitoring stations and orbiting satellites.

Farm land near Meadow, UT, from Google Earth.

Method & Guardrails

Model 1: Universal Deep Kriging

Estimate soil moisture at a **farm plot** as a function of **weather** and **distance** from **soil monitoring stations**.

Model 2: Image Translation

Down-scale **soil moisture forecasts** to a resolution relevant to irrigating a **farm plot** using **terrain imagery** as a guide.

Findings & Case Study

Model 1: Universal Deep Kriging.

Soil Moisture: ■Low ■ High

Path to Impact

NSF Proposal: CAIG: An Al-based framework for soil-moisture modeling and decision making

