Indirect Dating With Mixture Density Networks

K. Blake Vernon

Scientific Computing and Imaging Institute (Utah)

Brian Codding

Department of Anthropology (Utah)

Scott Ortman

Center for Collaborative Synthesis in Archaeology (CU Boulder)

Simon Brewer

School of Environment, Society, and Sustainability (Utah)

2025-09-24

The goal

Estimate a regional chronology p(t) that effectively summarizes the individual chronologies $p_i(t)$ of all sites s_i in a region of interest.

Why care?

For **businesses**

population size drives **labor costs** and **consumer demand** for goods and services.

For governments

population distribution is critical for allocating services and ensuring political representation.

For individuals

population provides for intangibles like **prosocial needs**.

And for science?

Climate ## and population are the levers of human history!

Cities like Ur and Catalhoyuk are established in Mesopotamia and Anatolia

Anatomically modern humans emerge in Africa

~300 kya

~6 kya

~75 kya

Humans begin migrating out of Africa

~12 kya

Subsistence economies shift from food collection to food production

The first humans

Anatomically modern humans

~300 kya

Cities like Ur and Catalhoyuk are established in Mesopotamia and Anatolia

Neolithic Revolution

~75 kya

The first migrants

Humans begin migrating out of Africa

The first domesticates

m %

Subsistence economies shift from food collection to food production

Most of my research focuses on the Neolithic in Western North America

Estimating population

Simple formula: more people & more stuff

Global Human Settlement Layer

But the archaeological record is a palimpsest \ointimes.

Solution: date the built-up area

Direct dating

Count tree rings in construction timbers.

Direct dating

Count tree rings in construction timbers.

But these are costly (§) and destructive *****!

Direct dating

Count tree rings in construction timbers.

Indirect dating

Relies on diagnostics with known start and end dates.

The model

An Al solution

We can estimate a regional chronology conditioned on some data x using a **Mixture Density Network**:

$$p(t|x) = \sum_{k=1}^{K} \pi_k(x) N(t \mid \mu_k(x), \sigma_k(x))$$

with

- K component Gaussians
- $\pi_k(x)$ mixing weights
- $\mu_k(x)$ means
- $\sigma_k(x)$ standard deviations

Loss function

Goal of MDN is to minimize **Negative Log Likelihood**:

$$-\log \mathcal{L}(\mathbf{t}|\mathbf{x}) = -\log p(t|\mathbf{x})$$

with log-sum-exponent trick to avoid numerical underflow.

Still a gaggle of challenges

Aligning data sets across sites

Accommodating variable site sizes

Addressing inconsistent site definitions

Coping strategy

Intuition: We want to loosen the requirement of direct association and look instead at the wider context.

Spatial aggregates

For q direct dates, r sites with recorded artifacts, and m artifact types, define aggregate $q \ x \ m$ artifact matrix A as:

$$A = WF$$

where

- W is a $q \times r$ spatial weights matrix
- \mathbf{F} is a disaggregate $r \times m$ artifact count matrix

 Ω Intuition: A tells us how much stuff is around each direct date.

Spatial basis functions

For a regular grid of k knots, define a $q \times p$ artifact matrix \mathbf{B} as:

$$\mathbf{B} = b(i, j)$$

where

• b(i,j) is a spatial basis function that accounts for the distance between direct date $i \in 1, ..., q$ and spatial knot $j \in 1, ..., p$.

 Ω Intuition: B tells us how direct dates are related in space.

Model graph

Test case

Greater Mesa Verde Region

Yellow Jacket Pueblo

Drawing by Charles Peterson

The data

Very preliminary results

Regional chronology

Over-specified with K = 128 mixture components

Site chronologies

More site chronologies

These sites are right next to each other.

What next?

Model does not account for duration, just construction events.

Spatial tools for handling datamisalignment are inflexible.

Al methods are not accessible to most archaeologists.

Thanks!

Archaeology Southwest

