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Abstract12

How might subsistence strategies structure the costs and benefits of habitat selection and,13

therefore, drive settlement patterning? We explore this question within an Ideal Distribution14

framework, arguing that (i) a habitat can be decomposed into its environmental covariates, (ii)15

their relative contributions to suitability can vary as a function of subsistence strategy, and (iii)16

the resulting differences will in turn lead to different population distributions across habitats. To17

evaluate these claims, we apply a Poisson point-process modeling approach known as maximum18

entropy (MaxEnt) to Archaic hunter-gatherer and Formative maize-farmer sites within the19

Grand Staircase-Escalante National Monument. Our results show that environmental covariates20

vary in their importance for each strategy and that the strategies themselves vary in their21

land use and habitat distribution, with Archaic foragers being widely distributed across space,22

Formative farmers more densely packed into areas indicative of higher maize productivity. The23

approach itself also has wide application to other subsistence strategies, including horticulture24

and pastoralism, across a range of environmental conditions.25

Keywords: Ideal Free Distribution, Grand Staircase-Escalante National Monument, Subsistence-26
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1 Introduction28

In the context of subsistence-settlement dynamics, the order in which choices are made matters,29

for the choice of where to live introduces new subsistence constraints and the choice of how to live30

introduces new settlement constraints (Binford, 1980; Bettinger and Baumhoff, 1982). While the31

interaction of these deserves further consideration, here we focus on the latter, on how subsistence32

strategies might constrain habitat selection. We argue that (i) a habitat can be decomposed into33

its environmental covariates, (ii) their relative contributions to suitability can vary as a function34

of subsistence strategy, and (iii) the resulting differences will in turn lead to different population35

distributions across habitats.36

The analysis is largely motivated by two complementary ideas. The first is that intensification37

can alter the way per capita suitability responds to demographic pressure (Kennett et al., 2006).38

The second is that measures of subsistence efficiency can be applied not only to the behaviors of39

individuals, but to locations in space (Magargal et al., 2017). Drawing on spatial modeling techniques40

outlined by Yaworsky et al. (in review), we implement our coupled subsistence-settlement approach41

within an Ideal Distribution framework (Fretwell and Lucas, 1969) using a statistical method for42

species distribution modeling known as maximum entropy (MaxEnt) (Phillips et al., 2004, 2006;43

Elith et al., 2011). Archaeological applications of MaxEnt have increased over the last several years44

(Banks et al., 2011; d’Errico and Banks, 2013; Galletti et al., 2013; McMichael et al., 2014a,b, 2017;45

Kondo, 2015; d’Errico et al., 2017; Wachtel et al., 2018), so a deeper understanding of the approach46

is called for. To aid in this, we rely on the interpretation of MaxEnt as a Poisson point process47

model (Berman and Turner, 1992; Baddeley and Turner, 2000), an interpretation that has garnered48

a great deal of attention in the recent ecological literature (Fithian and Hastie, 2013; Merow et al.,49

2013; Renner et al., 2015; Phillips et al., 2017). We evaluate our claims using the extensive record of50

subsistence and settlement provided by the distribution of Archaic (8,500-2,500 BP) and Formative51

(2,000-700 BP) sites in the contested Grand Staircase-Escalante National Monument (GSENM),52

where individuals transitioned from foraging to farming over a roughly 1500 year period, from 300053

to 1500 BP (Spangler et al., 2019).54

2 Theory, Methods, and Materials55

Intuitively, people will live where they can make the best living, however they choose to do that.56

Consider Archaic hunter-gatherers, whose broad diets include a large variety of wild resources57

(Simms, 2008). Because those resources are widely dispersed, the foragers themselves should be58

widely dispersed, too. For those who transition to farming, however, settlement will likely be more59

clustered, especially in an area like the arid Southwest, where potential maize production is spatially60

limited (Spangler et al., 2019). Thus, the spatial distribution of their archaeological materials should61
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Figure 1: Methods Diagram. The conceptual relationship between Ideal Free and Point Process models.
Note that the complementary log-log (cloglog) transforms an empirical density estimate into a probability of
site occurrence, which we take to be an operational definition of maximum potential suitability wherever
the IDM holds (discussed below and in supplement A).

differ as well, a fact that we can leverage to decompose their respective habitats into a number of62

environmental variables (precipitation, temperature, elevation, etc.), which are thought to co-vary63

with the suitability of that habitat. In this way, we are effectively walking a chain of inference64

from suitability, as defined by the theoretical Ideal Distribution Model (IDM), to the environmental65

covariates, whose contribution to suitability we measure with an empirical Poisson Point Process66

Model (PPM), as shown in Fig. 1. It is important to note that this interpretation of a PPM as an67

empirical model of suitability is only meaningful within the conceptual framework provided by the68

IDM; thus, it would be invalid in circumstances where individuals do not distribute themselves in69

conformity with that model.70

2.1 Deductive Model: Suitability and Subsistence Efficiency71

According to the IDM (Fretwell and Lucas, 1969), suitability should decline as a function of increasing72

population density. In the simplest case, this is because density leads to greater competition, which73

in turn reduces the benefit to the individual of occupying that habitat (Parker and Sutherland, 1986;74

McCool and Yaworsky, 2019). Given that individuals seek to maximize their own gains, the model75

predicts that they will settle the highest ranked habitat first, with subsequent infilling occurring up76

to the point where the next highest ranked habitat is of equal suitability, at which point individuals77

should settle both at an equal rate. This process will, thus, lead to an equilibrium distribution in78

which each individual experiences the same level of gain - the same actual suitability - regardless of79

the maximum potential suitability of the habitat they happen to occupy.80

A simple, intuitive way to articulate these model expectations with subsistence behavior draws81

on Optimal Foraging Theory (Emlen, 1966; MacArthur and Pianka, 1966; Charnov, 1976a,b) to82

postulate an identity between the suitability of a habitat and the optimal overall caloric return-rate83
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Figure 2: An IDM showing the effects of subsistence on settlement, specifically a change in the potential
suitabilities and relative rankings of habitats A and B.

an individual can achieve there when pursuing a particular subsistence strategy. This identity84

expands on the strategy employed by Magargal et al. (2017), assigning to each habitat an estimate of85

expected subsistence efficiency but also allowing for foraging strategies themselves to be negatively86

density-dependent. The identity also provides for a number of additional subsistence-settlement87

dynamics. As Kennett et al. (2006) show, the transition to a farming strategy can decrease the88

magnitude of density’s effect on suitability and introduce Allee effects, or positive contributions89

to suitability at low density (Allee et al., 1949; Sutherland, 1996). In addition, it suggests that90

subsistence transitions can lead to changes in the maximum potential suitability of habitats, which91

can in turn lead to changes in their relative rank.92

Of those three, the last should have the largest effect on density distributions. As shown in Fig.93

2, we assume in the simplest case two habitats, HA and HB, and two strategies, S1 and S2. S194

has greater subsistence efficiency in HA relative to HB and should, therefore, rank HA above HB.95

Conversely, S2 has greater efficiency in HB relative to HA and should, therefore, rank HB above96

HA. All else being equal, a change in maximum potential suitability should, in turn, entail different97

habitat distributions for each strategy. Individuals pursuing S1 should occur at higher densities in98

HA, and individuals pursuing S2 should occur at higher densities in HB . This outcome is a simple,99

qualitative variation of the “input matching rule” (Parker, 1978), which states that population100

density should be proportional to the maximum potential suitability of a habitat.101

Logically, the inverse of this matching rule should also hold, so that the observed density of individuals102

pursuing a subsistence strategy within a habitat indicates something about that habitat’s potential103
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suitability for the strategy. That is, if the density of individuals pursuing strategy S1 in a habitat104

is greater than the density of individuals pursuing strategy S2 in that habitat, then the potential105

suitability of that habitat for S1 ought to be greater than its potential suitability for S2, assuming106

at least that the strategies are at equilibrium.107

Similar reasoning applies to an environmental variable’s ecological utility function, where that refers108

to changes in the variable that increase or decrease a habitat’s potential suitability (for how we109

specify an ecological utility function, see discussion of the marginal response below and in Supplement110

A). Since suitability is tied to subsistence efficiency, environmental covariates should also exhibit111

different ecological utility functions for individuals pursuing different subsistence strategies, which112

should in turn entail different habitat rankings and habitat distributions. So, just as observed113

population density suggests something about potential suitability, it should suggest something about114

these ecological utility functions, too.115

Crucially, these inferences from observed density to both potential suitability and ecological utility116

rely on the assumption that no Allee effects have occurred, that density affects both strategies117

equally, and that settlement costs are the same for both. Yet, as already noted, these assumptions118

are almost certainly false. Thus, without suitable actualistic research to estimate settlement costs119

and other subsistence related constraints and trade-offs, the naïve inference from density to potential120

suitability is tantamount to inferring from the fact that a person occupies a low quality habitat121

that they must actually prefer that habitat, which is uncharitable in the extreme (Codding and122

Bliege Bird, 2012; Codding and Bird, 2015). Heeding this concern, we fall back on evaluating123

potential suitability relative to land use itself, assuming that this must in some way relate to the124

underlying subsistence efficiency of each strategy.125

2.2 Inductive Model: MaxEnt as a Point Process126

An inductive (or predictive) distribution model requires a dependent variable or response, in this127

case site “occurrence” data, and a set of independent variables or predictors, here environmental128

variables thought to co-vary with the response. Typically, archaeologists think of site occurrences as129

presence-absence or Bernoulli responses, thus turning to logistic regression to model the probability130

of each outcome, which is then interpreted in terms of habitat suitability (Kvamme, 2005; Wachtel131

et al., 2018). This is a somewhat awkward approach, however, for two important reasons (Warton132

and Shepherd, 2010; Phillips and Elith, 2013; Fithian and Hastie, 2013; Hastie, 2013; Renner et al.,133

2015). First, systematic inventory of potential absence locations is rarely conducted, so the data134

we have at our disposal is overwhelmingly presence-only. This is exacerbated by the fragmentary135

record of archaeological sites commonly used as a proxy for past occurrences. Second, this approach136

often fails to recognize that probability measures are sensitive to spatial scale. If a region consists of137

two habitats about whose environmental conditions we know nothing save that one has twice the138
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area of the other, we should not assign to each a probability of settlement of 0.5, but rather 0.66139

and 0.33 respectively.140

To address these issues, we interpret site occurrences as counts or Poisson responses per unit area,141

in short, as densities (Warton and Shepherd, 2010; Fithian and Hastie, 2013; Renner et al., 2015).142

More precisely, we assume that archaeological sites are independent and identically distributed point143

locations sp = {s1, ..., sN } occurring within a larger project window W . While this assumption of144

independence is almost certainly unrealistic, it does allow us to treat the density distribution of sites145

as a Poisson point process and thereby formulate expectations regarding that distribution using a146

point process model (PPM).147

A Poisson point process can be either homogenous or inhomogenous (Baddeley and Turner, 2000;148

Baddeley et al., 2015). For a homogenous process, the point pattern exhibits “complete spatial149

randomness,” so there will be variation around the mean, but not variation whose direction away150

from the mean we can estimate. Thus, our expectation regarding a habitat i’s density (denoted151

λ(si) in the PPM literature) is just the average density of W :152

λ(si) = N

areaW
(1)

This serves as a null model. It is equivalent to the hypothesis that individuals do not differentiate153

habitats with respect to their land use, so that we have no reason to expect sites to occur more154

often in one habitat as opposed to another.155

For an inhomogenous process, the point pattern does not exhibit complete spatial randomness, so the156

density within any habitat can be modeled as a log-linear response to a vector X of environmental157

covariates {x1, ..., xj}:158

λ(si) = exp(β0 + β1X(si)) (2)

where β0 is the intercept, β1 a vector of coefficients, and the error a Poisson distribution. A159

fitted PPM model can be used to estimate the population density in each habitat based on its160

environmental conditions, which is equivalent to estimating site occurrence probability for every161

habitat size (Fithian and Hastie, 2013). We emphasize that this is only an estimate of the relative162

density (referred to as the relative occurence rate), as we cannot measure the total prevalence of163

points within the window without true absence data (Fithian and Hastie, 2013; Hastie and Fithian,164

2013; Phillips and Elith, 2013).165

One popular form of PPM is MaxEnt (Fithian and Hastie, 2013; Merow et al., 2013; Renner and166

Warton, 2013; Renner et al., 2015; Phillips et al., 2017), which estimates β-coefficients for Eq. 2167

subject to the constraint that the geographic probability distribution be as close as possible to168
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absolute entropy (Jaynes, 1957). For the sake of clarity, we use ’MaxEnt’ in this paper to refer169

to a particular software implementation for training a PPM and ’entropy’ to refer to a particular170

concept in information theory (Shannon, 1948). In terms of point patterning, absolute entropy is171

equivalent to homogeneity or complete spatial randomness, or a geographically uniform probability172

distribution. Formally, MaxEnt estimates β-coefficients by maximizing the penalized log-likelihood173

of the following:174

Pi/Bi = exp(β0 + β1X(si)) (3)

where Pi is the probability density of covariates at presence locations and Bi is the probability175

density of covariates across the research area, typically estimated using background or quadrature176

points, also known as pseudo-absence points (Elith et al., 2011; Merow et al., 2013). The ratio is177

equivalent to point density in ecological as opposed to geographic space (across habitats, that is, as178

opposed to coordinate locations). The distance between them is the relative entropy of the point179

process (also known as the Kullback-Leibler or KL divergence) (Elith et al., 2011; Merow et al.,180

2013). Minimizing relative entropy in ecological space is equivalent to maximizing absolute entropy181

in geographic space, for smaller values of relative entropy suggest less differentiation in land use,182

which in turn entails greater homogeneity in the resulting point pattern.183

One can also think of the ratio Pi/Bi as a means of controlling for a covariate’s prevalence (Elith184

et al., 2011; Merow et al., 2013). The reason for doing so is straightforward. Though many sites185

may occur at some value of an environmental covariate, if that value is ubiquitous, it should be186

given less weight in fitting the final model, for it becomes that much harder to discern whether187

individuals have arrived at that value because they chose to or simply as a matter of chance.188

But even standard linear PPMs account for the background distribution, so why use a MaxEnt189

PPM? This is a complicated question involving a number of modeling trade-offs. By default, MaxEnt190

transforms the set of covariates X into a larger set of features including product, quadratic, and191

hinge terms (described in Supplement A) (Phillips and Dudík, 2008; Elith et al., 2011; Phillips et al.,192

2017). It then reduces that set through regularization, which also limits overfitting by penalizing193

the log-likelihood (Dudík et al., 2004; Phillips et al., 2004; Elith et al., 2011). This process has the194

advantage of capturing complex multi-modal responses unavailable to a simple linear PPM. It also195

increases the model’s predictive power (Elith et al., 2006; Phillips and Dudík, 2008; Wachtel et al.,196

2018; Yaworsky et al., in review). Unfortunately, the price of this gain in predictive power is a loss of197

interpretability (Phillips et al., 2006), specifically with respect to covariate importance, where linear198

models can leverage standardized coefficients and model diagnostics like the Likelihood Ratio Test.199

MaxEnt does provide alternative measures (described below), but these must be read with caution,200

for the underlying Poisson probability distribution is less transparent and the subsequent statistical201

inference more opaque. Thus, MaxEnt faces a familiar modeling trade-off between prediction and202
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Figure 3: Reference Map for the Grand Staircase-Escalante National Monument. Includes
nearby national parks, major water features, and the original boundary designation, which defines the
current project window.

interpretability. To get some handle on this trade-off, we compare the results of a feature-restricted203

MaxEnt and linear PPM.204

2.3 Archaeological Point Patterns (λ)205

The project window from which we draw environmental and archaeological information is the206

GSENM, an area in south-central Utah along the western most extent of the Colorado Plateau.207

When these data were collected, the monument consisted of some 1.9 million acres (7.6 thousand208

km2) commonly subdivided into three major regions including the Grand Staircase, the Kaiparowits209

Plateau, and the Canyons of the Escalante, as shown in Fig 3. While mostly uniform with respect210

to their aridity, these regions do exhibit dramatic variation in topography and vegetation.211

Here we focus on Archaic (AR) and Formative (FO) economies within the GSENM as they present212

a fairly stark contrast in their respective subsistence strategies. From roughly 8,500 to 2,500 BP, the213

former involved a broad-spectrum foraging strategy including everything from large game animals214

to less profitable resources like nuts and seeds (Simms, 2008). Beginning around 2,000 BP and215
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Figure 4: Point Patterns. The distribution of Archaic and Formative Sites.

persisting for nearly 1,300 years, the latter involved a small-scale, agricultural strategy highly reliant216

on maize (Coltrain et al., 2007). Importantly, Formative maize farming is a form of intensification217

(sensu stricto, Morgan, 2015), whereby higher energetic yields are gained at the expense of diminished218

efficiency (Barlow, 2002), producing more food per unit area (Boserup, 1965) and increasing the219

carrying capacity of occupied habitats. This is reflected in the relative abundance of observed220

residential sites associated with each time period (AR=207, FO=891).221

Spatial data for archaeological sites and information required to associate each with Archaic and222

Formative time periods are drawn from records curated by the Bureau of Land Management (BLM)223

and the Utah State Historic Preservation Office (SHPO). These records contain field notes detailing224

the presence and number of formal diagnostic materials. The rules we use to infer time period225

affiliations from those diagnostics are outlined in detail in our report to the BLM GSENM district226

office (Spangler et al., 2019). We then select only residential sites (as opposed to temporary camps)227

defined as places of long-term habitation and indicated archaeologically by the presence of either228

deep hearths, habitation features, which are too costly to build when stays are short, or heavy229

groundstone, which are too costly to transport (Beck et al., 2002). The resulting point patterns are230

shown in Fig. 4. These represent spatial patterning in prehistoric foraging and farming strategies231

within the GSENM.232
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Figure 5: Environmental Covariates Projected in Geographic Space. For visualization purposes,
the z-values of these covariates were compressed into a -3 to 3 range.

2.4 Environmental Covariates (X)233

For this analysis, we decompose suitability into a set of ten environmental covariates (5), which we234

derive from a larger set through Principal Component Analysis to reduce spatial covariance (Yaworsky235

et al., in review). These group roughly into landscape attributes, climate values, environmental236

productivity, and resource distribution. Landscape attributes include aspect (both east-west and237

north-south), slope, and watershed size, with the first two being extracted from a digital elevation238

model (U.S. Geological Survey, 2019) and the latter provided by Utah’s Automated Geographic239

Reference Center (AGRC Staff, 1984). Our sole climate covariate is thirty-year average temperature240

(PRISM Climate Group, 2019). Indicators of environmental productivity include maize growing-241

degree days (GDD) (Coop, 2014) and net primary productivity (NPP) (Numerical Terradynamic242

Simulation Group, 2013). Finally, we define resource distributions as cost-distance to water features243

computed using Tobler’s hiking function (Tobler, 1993), specifically cost-distance to springs, streams,244

and wetlands. The rasters encoding these covariates are projected to a 50-m x 50-m resolution. For245

more details regarding these covariates, see supplement B.246

Climate and productivity covariates in our dataset are measures of modern variation within the247

GSENM, so we must assume that the relative differences across space for each category are largely248

representative of relative differences in the past. For example, if it is hotter in the eastern part249

of the GSENM today, then it was hotter in the eastern part of the GSENM during the times in250

question. While further work is required to test this assumption, we proceed with this analysis251
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without introducing additional bias that would come with using spatially-explicit reconstructions of252

past climate and environment (Codding and Jones, 2013).253

2.5 Hypotheses254

We argue that these environmental covariates will contribute differentially to suitability as a function255

of subsistence strategy - in this case, Archaic foraging and Formative farming - and that this will256

lead to differences in the downstream distribution of those strategies. Transposed into the language257

of point processes, these claims amount to the following null and alternative hypotheses:258

H0 Archaic and Formative point patterns are homogenous.259

H1 Archaic and Formative point patterns are inhomogenous.260

H2 Archaic and Formative subsistence strategies differ significantly in (a) the ecological261

utility of covariates, (b) the potential suitability of habitats, and (c) the spatial262

clustering of sites.263

We stress that we are evaluating these hypotheses relative to land use as we have no independent264

control on subsistence-settlement constraints and trade-offs. In general, however, we expect that265

environmental covariates more conducive to maize agriculture will play a greater explanatory role in266

Formative site patterning. Because individuals pursuing a more intensive farming strategy have more267

to gain by reducing handling rather than search costs (Bettinger and Baumhoff, 1982; Kelly, 1992;268

Hawkes and O’Connell, 1992; Morgan, 2015; Parker et al., 2018), we also expect that Formative269

individuals will be more sedentary, with residential sites exhibiting greater levels of clustering around270

maize-promoting covariate values. Conversely, those pursuing a more general and less intensive271

Archaic foraging strategy should be more mobile, with residential sites trending toward a homogenous272

point pattern spread out across a wider range of covariate values.273

2.6 Analytical Methods274

To test these hypotheses, we center and scale our covariates, subtracting by the mean of each and275

dividing by their standard deviations, which makes estimated β-coefficients directly comparable. To276

estimate the background distrubtion of these covariates for model training, we generate a spatially277

uniform or gridded quadrature scheme of 100,000 points based loosely on a rule recommended by278

(Renner et al., 2015) (for more details, see Supplement A).279

We then use the spatstat package in R (Baddeley et al., 2015) to fit three linear PPMs: (a)280

a stationary or homogenous PPM that measures the average density for each strategy; (b) a281

strategy-insensitive, inhomogenous PPM of all the points, both Archaic and Formative; and (c) a282

strategy-sensitive, inhomogenous PPM that treats time period as a categorical interaction term283
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with two levels, Archaic and Formative. These are nested models, allowing Analysis of Variance284

(ANOVA) to evaluate whether each model is significantly better than its simpler alternative. The285

results will tell us whether the respective point patterns are different than a homogenous point286

process (H0 and H1) and whether they are different than each other (H2). PPM (iii) also provides287

a de facto Wald test of signficant differences in the linear importance of each covariate for each288

subsistence strategy (H2a). A graphical Ripley’s L test (Ripley, 1977) accompanied by a Maximum289

Absolute Deviation (MAD) test (Baddeley et al., 2014) evaluates potential for significant clustering290

in foraging and farming point patterns (H2c) (further details in Supplement A). These will give us291

an idea of their “notional” habitat size as well as their density of occupation within it.292

Next we use the dismo package in R (Hijmans et al., 2017) to fit a MaxEnt PPM for each subsistence293

strategy, restricting its default feature expansion to hinge and quadratic terms so that only the294

additive contributions of each covariate are measured, which eases interpretation of MaxEnt’s295

estimates of covariate importance. Through iterations of fitting a PPM, MaxEnt tracks changes in296

the empirical log-loss associated with changes in each feature, which is assigned to the corresponding297

covariate. Once a model is fitted, the total contribution to the log-loss for each covariate is divided298

by the sum of all covariate scores, and then multiplied by one hundred to give a percent contribution299

score (Phillips, 2017). MaxEnt then randomly permutes each covariate and evaluates the loss in300

model performance, measured using the area under the receiver operating characteristic curve (AUC)301

(for a discussion of the AUC, see Yaworsky et al., in review). Again, these measures are divided302

by the total loss across all covariates, and then multiplied by one hundred to give a permutation303

importance score (Phillips, 2017). Together these measures provide some indication as to the304

importance of each covariate to the final model and by extension to the corresponding subsistence305

strategies (H2a). To validate these scores, we also conduct a spatial random bootstrap and fit306

MaxEnt PPMs to the resulting data. This includes building ten models for each time period and307

in each case removing approximately one quarter of the presence and background points within308

spatially defined quadrats (further details in Supplement A). An ANOVA tests whether the results309

are significantly different.310

We generate marginal response plots (Fig. 8) for each covariate by holding all other covariates at their311

zero-centered means and predicting the density from a MaxEnt PPM using all the data. That is then312

converted into a probability using the complementary log-log transform (cloglog) (Baddeley et al.,313

2010; Phillips et al., 2017). The marginal response shows how potential suitability (operationalized as314

probability of occurrence) responds to changes in a covariate within the average habitat as represented315

in ecological space and relative to a subsistence strategy, so they are graphical representations of316

strategy-specific ecological utility functions (see Supplement A for the actual formulas estimated by317

MaxEnt). We compare these plots to probability density functions for covariates at Archaic and318

Formative presence locations and background locations to show how MaxEnt’s probability estimates319
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Figure 6: Ripley’s L Test. Values greater than expected by the null mode (represented by the red dashed
line) indicate spatial clustering. Values less than expected by the null model indicate spatial repulsion. The
gray ribbon represents Monte Carlo simulations of the null mode. Where the line enters the gray ribbon,
it is no longer significantly different than complete spatial randomness. The MAD statistic measures the
maximum distance between observed values and the null model.

relate to the ratio Pi/Bi, with Bi being estimated using the quadrature points.320

Finally, we use a MaxEnt PPM (iii) to estimate the density at each geographic location within the321

GSENM. MaxEnt’s raw predictions are point density estimates standardized by the total number322

of occurrence locations. Although we do not know the true prevalence of each strategy, to get a323

sense of the difference in population density distributions we take the product of MaxEnt’s raw324

output and the total number of sites for each strategy. Again, the standardized estimates are325

converted into probabilities using cloglog. Being transformations of the underlying density, these326

probability estimates are not susceptible to issues of scale (Fithian and Hastie, 2013) and thus327

provide a suitable means for operationalizing habitat suitability. Although they are not observations,328

strictly speaking, they are pair-wise estimates, so we can use a Wilcoxon Signed-Rank Test to see if329

the model suggests significant differences in the spatial distribution of potential suitability (with330

respect to land use) between Archaic hunter-gatherers and Formative maize-farmers (H2b). While331

there are more sophisticated techniques for map comparisons (Wilson, 2011), this test is sufficient332

for current purposes.333

All statistical analyses are conducted in the R programming environment (R Core Team, 2019) with334

code and further discussion reported in the supplementary material.335
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Figure 7: MaxEnt and Linear PPM Measures of Covariate Importance. These are estimated for
both Archaic (AR) and Formative (FO) subsistence strategies. (A,B) ANOVAS indicate that all differences
between strategies are significant. (C) For comparitive purposes, the log-β’s for linear PPM (c) are reported.
In general, (A) and (B) speak to the magnitude of importance, (C) to its direction.

3 Results336

The results of the ANOVA show significant improvement in model fit for each incremental increase337

in model complexity, from stationary (a) to strategy-insensitive (b) (χ2(10) = 960, p < 0.0001)338

and from strategy-insensitive (b) to strategy-sensitive (c) (χ2(11) = 642, p < 0.0001). This shows339

that there are significant differences in land use patterns between the two strategies (H2 is true),340

and that they are not homogenous (H0 is false and H1 is true). Results of the graphical Ripley’s L341

and MAD tests are shown in Fig. 6. Together, these indicate that Archaic hunter-gatherers and342

Formative maize farmers exhibit clustering over the same range of approximately 30 kilometers,343

which is suggestive of their notional community size. Over that range, however, Formative maize344

farmers exhibit higher densities than Archaic hunter-gatherers (MAD FO = 9.12, MAD AR = 4.90).345

Spatial bootstraps of MaxEnt measure spatial variation in percent contribution and permutation346

importance scores for each covariate, as shown in Fig. 7. Relatively speaking, temperature appears347

to be most important to Archaic hunter-gatherers, followed by slope and watershed size. For348

Formative maize-farmers, it is slope followed by NPP, cost-distance to springs, and maize GDD.349

ANOVAs comparing the distributions of percent contribution and permutation importance for each350

covariate and time period suggest that all are significantly different. As evidenced by the linear351

coefficient, Archaic individuals gravitate towards PRISM temperatures below the mean (µ = 10.77◦C).352
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Figure 8: Covariate Density and Marginal Response Plots in Ecological Space. MaxEnt models
Pi/Bi, the ratio of covariate density at presence locations (AR and FO) to covariate density at background
locations (BG), with regularization to avoid over-fitting. MaxEnt then converts that ratio into a probability
using the cloglog transform. The result is a margial response plot, a line showing the response of each
subsistence strategy (solid red for AR and dashed gray for FO) to change in the covariate at the margin, the
“average” habitat in this case, or the point at which other covariates are held at their zero-centered mean.

Higher values of NPP (µ = 1325.29 kg-C/m2/year) and Maize GDD (µ = 2896.54◦F-sum) attract353

agriculturalists.354

Probability density functions and marginal response plots are shown together in Fig. 8. In general,355

the greater the relative entropy (i.e., the greater the KL divergence between the probability densities356

of a covariate at presence and background locations), the greater the probability of occurrence. For357

instance, Formative sites tend to be closer to springs than the average background location within358

the GSENM, as shown by the gray spike around -1.1 standard deviations from the mean. That359

fact also corresponds to the change in MaxEnt’s modeled response, with higher probabilities of a360

Formative site occurring at the same z-score value of the covariate, as shown by the grey line. The361

overall trend is also indicated by the negative log-β in linear PPM (c).362

Fig. 9 shows the geographic distribution of probability estimates, which serves as a proxy for the363

potential suitability of each location with respect to the Archaic and Formative. The Wilcoxon Sign-364
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Figure 9: Site Density and Site Probability in Geographic Space. MaxEnt’s raw output is a density
estimate standardized by the total number of points in the project area, so these density maps were produced
by first multiplying by the total number of points for each time period. The probability at each location
represents the potential suitability of that habitat, interpreted as its importance to land use behavior.

Ranked Test indicates that the probability maps exhibit significantly different spatial distributions365

(p < 0.0001). The dispersed area in the central monument along the northwestern most extent of366

the Kaiparowits Plateau appears to be highly suitable to Archaic individuals, as is the area around367

the Escalante River, the Burr Trail, and Capitol Reef in the northeast of the monument. Values of368

PRISM temperature are high in this area, with springs and streams cost-distance evidently being369

highly variable. The concentrated area of high probabiliy along Fiftymile Mountain in the southeast370

of the monument is evidently highly conducive to maize agriculture. The Vermillion Cliffs area in371

the southwest of the monument looks to be a high suitability area across the range of subsistence372

strategies explored here. This region is high in Maize GDD, low in levels of slope and cost-distance373

to springs and wetlands, and average in conditions for all other covariates.374
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4 Discussion375

Our results show that Archaic hunter-gatherers and Formative maize farmers differ significantly376

with respect to their land use patterning in the GSENM. Not only are their point patterns not377

spatially random, they are also significantly different from each other. These two facts together allow378

us to leverage the spatial distribution of observed density for each strategy to assess the relative379

importance of environmental covariates (percent contribution, permutation importance, and linear380

βs) as well as the potential suitability of locations within the GSENM, at least with respect to land381

use. Presumably, high probability areas for the Formative are also those most conducive to maize382

agriculture. This may be because lower values of slope and cost-distance to springs indicate ease of383

irrigation and maize GDD, obviously, more opportunities for production.384

Our results also have important implications for the region’s archaeology. Here we note two. First,385

according to the Ripley’s L test, Formative maize farmers and Archaic hunter-gatherers exhibit386

clustering at the same range, but at different densities. This seems to be slightly at odds with387

regional trends, as well as theory, where we expect farmers to be more concentrated in a smaller area388

owing to their reliance on a single crop and hunter-gatherers to be more dispersed over a larger area389

owing to their less restrictive dietary requirements. This may be a result of the landscape imposing390

constraints on neighborhood size, in which case the different strategies are only reflected in the391

densities within those neighborhoods. In this case, "neighbors" are sites that occur closer together392

than one would expect by chance, and the "neighborhood" is the spatial extent of that clustering. A393

landscape constraint then would be something like a canyon that sets an upper limit on the size of a394

neighborhood, but still allows for different numbers of neighbors within it. Alternatively, this result395

could be a limitation of the Ripley’s L statistic, which does not account for potential differences in396

the underlying processes generating the spatial patterning we see (Baddeley et al., 2000).397

Second, reconstructing habitats for each strategy offers an additional avenue to investigate the398

transition from foraging to farming, allowing us to say with greater confidence whether an “Early399

Agricultural" site (Spangler et al., 2019; Geib, 1996; McFadden, 2016) is affiliated with a more400

foraging-like or more farming-like economy. In this case, if we know where Archaic sites are more401

likely to occur, then absent other dating methods, the occurrence of a site there would suggest402

an Archaic affiliation; similarly, for the Formative. An example of this would be the Kaiparowits403

Plateau in the central area of the monument. As shown in Fig. 9, this is a high probability area for404

the Archaic, but not the Formative; hence, a site there is more likely to be associated with hunting405

and gathering rather than farming.406

MaxEnt’s marginal response plots in Fig. 8 provide a graphical illustration of the ecological utility407

function for each covariate and subsistence strategy, showing how suitability varies as a function408

of the covariate, though importantly without the costs explicitly measured. Note, too, that the409
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probability density function for the covariate at presence locations is analogous to the resource-410

utilization niche as defined by MacArthur and Levins (1967). The marginal response is, thus, that411

niche weighted by the background density, which allows us to consider land use choices within the412

range of alternatives actually available. The probability maps are then those niches projected into413

habitats found in geographic space, which gives us an idea of their potential suitability.414

We may also interpret the marginal response as a background-weighted representation of niche-415

breadth, overlap, and divergence (MacArthur and Levins, 1967). Temperature, for example, shows a416

unimodal response for both the Archaic and Formative. However, the temperature niche-breadth417

– the range of the covariate where the probability of occurrence is above a certain threshold – is418

much narrower for the Formative than it is for the Archaic. As the peaks are centered near zero,419

this suggests greater sensitivity among agriculturalists to deviations from the mean. Niche-overlap –420

here defined as the range of the covariate where each strategy has a probability of occurring above a421

certain threshold – and its complement, niche-divergence, can also be extracted from these results.422

NPP is a good example of the former, with Archaic and Formative niches overlapping at high values.423

Watershed size is an interesting example of the latter, with Archaic centered around the mean424

and flanked by two Formative niches. Were these contemporaneous strategies, niche-overlap and425

divergence would point to potential locations of resource competition.426

These points serve as well to highlight an important cautionary tale, that inferences regarding land427

use will be spurious when insensitive to differences in subsistence efficiency. As Fig. 9 shows quite428

clearly, individuals who practice different subsistence strategies will use land differently and thus429

distribute themselves differently across the landscape. This is reinforced by the ANOVA comparing430

strategy-sensitive and insensitive PPMs. Thus, archaeological applications of the IDM may need to431

alter proxies of suitability when evaluating settlement across subsistence transitions.432

We have also shown that modeling the spatial distribution of the density within a Poisson point433

process framework sheds light on the underlying environmental features composing a habitat434

and that measures of their importance provide a means of estimating the potential suitability of435

those habitats. In this sense, PPM is the inductive arm of the deductive IDM. Where the latter436

structures our expectations regarding optimal settlement behavior, the former tests our hypotheses437

regarding important constraints and trade-offs. In a related way, the cloglog transform serves as our438

mathematical inference from density to potential suitability, with the important caveat that these439

are restricted to land use patterning.440

With few exceptions (Winterhalder et al., 2010) most ethnographic (Moritz et al., 2013), historic441

(Yaworsky and Codding, 2017), and archaeological (Kennett, 2005) applications of the IDM begin by442

establishing proxies of habitat suitability a priori and then evaluate qualitative model predictions443

using settlement data. Here instead we begin by assuming that settlement behavior conforms to444
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the IDM, which is reasonable given broad empirical support (Codding et al. this issue; Weitzel et445

al. this issue, Jazwa et al. this issue), and then leverage this assumption to decompose suitability446

into its environmental covariates. Future studies could expand on this Poisson point process447

approach by evaluating population-suitability dynamics in archaeological contexts iteratively over448

time (Winterhalder et al., 2010), and further validating its use with ethnographic cases where449

individual return rates (E/T ) are known, as others have called for (Codding and Bird, 2015).450

Before concluding, we emphasize several important confounds that may bias this analysis. First, we451

constrain our sample of the archaeological record to Archaic and Formative residential sites defined452

by the presence of certain costly architectural features and heavy groundstone. Obviously, this is453

an imperfect definition, as it obscures differences in mobility between foragers and farmers, which454

biases our estimate of the true population density for each strategy. Related to this is the fact that455

we have flattened variation in the rate of occupation across time, assuming in other words that456

all sites affiliated with a specific strategy are occupied at the same time. Since the Archaic lasted457

nearly 6000 years, the Formative only 1500, this is almost certain to further bias our estimate of the458

true density. To mitigate these worries, we suggest that these would not change the differences we459

have found, only their magnitude, in fact, exaggerating the differences, with Archaic sites being460

less densely packed and more dispersed, Formative site more densely packed and less disperseed.461

Nevertheless, additional empirical work is needed to evaluate that claim.462

Another potential confound concerns the fact that data are provided by archaeological records463

generated from surveys which exhibit bias in sampling effort and detection. Fortunately, ecologists464

have methods for handling these biases (Warton et al., 2013; Fithian et al., 2015), and those should465

be applied in future work. Finally, there is the issue of interactions in the point process, where the466

occurrence of an individual in one location serves either to attract or repel others from distributing467

themselves in proximity, both spatially and temporally. This is a violation of the independence468

requirement in the Poisson process, and is highly likely to have occurred given our social tendencies.469

PPMs have sophisticated tools for accommodating these interactions (Baddeley and Turner, 2000;470

Baddeley et al., 2015), and future studies should investigate their potential.471

5 Conclusion472

The Ideal Distribution Model is a deductive framework within which to investigate variation in473

prehistoric settlement decisions. When alternative strategies exhibit differences in their efficiency474

across habitats, those habitats will also differ in their ecological utility and potential suitability, here475

interpreted as measures of importance for overt land use behavior. Those differences will in turn lead476

to downstream differences in the spatial occurrence of individuals pursuing different strategies, as477

well as the distribution of their respective archaeological materials. As it models the distribution of478
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populations across habitats, a Poisson point process approach like MaxEnt provides a sophisticated479

set of tools for applying these and other extensions of the IDM framework to actual empirical cases,480

such as the forager to farmer transition in the GSENM.481
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