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1 Introduction

Urban geographers recognize density as a crucial property of human communities which in-

fluences many other properties, including productivity, resource needs, and infectious disease

rates (Angel et al., 2021; Bettencourt, 2021; Duranton & Puga, 2020). The archaeological

record of subsistence farming societies contains physical traces of community formations

with a wide range of densities, often glossed as “dispersed” or “aggregated” (Birch, 2013;

Drennan et al., 2015; Gyucha, 2019). The primary difference between the two has to do

with the spatial distribution of residents relative to areas of primary (food) production. In

dispersed formations, households are scattered across an area, interspersed with the land

that they farmed, thus requiring them to commute to central places for various forms of so-

cial production. In aggregated formations, in contrast, households are clustered in a village

or town, such that they reside in locations of social production, but must commute to fields

for primary production.

From a complex systems perspective, the main way these two settlement morphologies

vary is with respect to which costs are being minimized. In the dispersed pattern, costs

associated with primary (food) production by the household are being minimized, whereas

in the aggregated pattern, it is costs associated with various forms of social production, from

government and ritual to economic exchange and warfare. Presumably, choices regarding

which sorts of costs to minimize are driven by the relative productivity of primary and

social production, which is to say, their relative importance, broadly construed, for human

well-being in a given context.

There are many episodes in history where human settlements transitioned from dis-

persed to aggregated, and presumably this is a signal of a change in the relative value of

social vs. primary production for the residents. This can occur for a variety of reasons,

including an increase in the social cost of not being aggregated (e.g., due to warfare); a
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decrease in transport costs for staples (due to animal traction, wheeled vehicles, roads, etc.);

an increase in land productivity which changes the balance of costs of transport for primary

vs. social production; or an increase in the contribution of exchange to household incomes,

which can derive from increases in community size and density. In addition, while one can

conceptualize transitions between dispersed and aggregated forms of settlement in general

systems terms, in real human communities a variety of political or ideological factors can

keep people from adopting an energetically balanced form of settlement given prevailing

conditions. So, there are opportunities for archaeologists to study deviations from general

equilibrium conditions in addition to factors that shift the equilibrium in a given context.

For all this work, however, there is a fundamental issue: the identification of community

territories. It is relatively straightforward to define the boundaries of aggregated settlements

by finding the extent of built space and/or artifactual remains. However, to define the

community boundary one needs to know the extent of agricultural land used by the residents,

and this is often difficult to determine from the village remains themselves (Varien, 1999b).

In contrast, it is often quite difficult to determine the boundaries of dispersed communities

due to gaps in survey coverage or relatively consistent distributions of farmsteads, but once

one has determined the community territory it is straightforward to define the associated

agricultural land.

In this paper, we present a method we developed to solve such problems, which enables

us to compare the properties and resilience of dispersed vs. aggregated communities on the

same landscapes. We draw on three extensive compilations of archaeological data from

different portions of the ancestral Pueblo region of the US Southwest, using the locations of

what we call community centers as tethers for defining territories that we infer were used by

social communities over extended periods of time (Glowacki & Ortman, 2012; Varien et al.,

2007). In some regions, community centers are sites containing civic architecture, or more
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households than could plausibly be related by reckoned kinship. The key feature of these

centers is that they represent locations against which travel time distances to other sites can

be compared.

While not strictly required by our algorithm, we make the simplifying assumption that

once established, community territories were relatively fixed in space for the duration of the

occupations of their associated sites. This allows us to use the distribution of all recorded

residences, regardless of their periods of occupation, in defining community territories. There

are several reasons why we believe this is a reasonable simplification. First, there are strong

cross-cultural regularities in the time individuals spend in daily travel from and to their

residences, so dispersed farming communities tend to be dispersed across the distance associ-

ated with this typical travel time, regardless of the number of households involved (Marchetti,

1994). Second, the archaeological record of our study areas supports the idea that commu-

nity territories did not shrink when their populations aggregated into villages. In some

cases, farmsteads were converted to field houses, with some building materials being reused

elsewhere and evidence for continued limited activity use (Varien, 1999b, 1999a, 2002). In

other cases, grid gardens were constructed directly within older rubble mounds by residents

of newer, aggregated villages nearby (Gauthier & Herhahn, 2005). Third, an analysis that

allowed community territories to vary by time step would reduce variation in the density of

the resulting units, thus washing out variation in one of the most important social properties

one would ideally want to examine. Fourth, in areas where there is strong survey coverage,

dispersed residences form clusters, often but not always centered on a few larger settlements,

and this clustering is apparent even when the dispersed residences are plotted by time step

(Schachner, 2012; Varien, 2002). Fifth, the effects of population growth for dispersed farming

communities are not parallel to the effects of population expansion in aggregated settlements.

In the latter, the area of the settlement must grow somewhat because the residential density
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is already relatively high. But in dispersed settlements, there is often unused land between

existing farmsteads that can be settled. This, combined with the strong cross-cultural regu-

larity in typical commute times, leads to much greater consistency in the spatial extent of

residents in a dispersed community than in the case of an aggregated community. Finally,

given the inherent incompleteness of the archaeological record, it seems most appropriate to

use all remains to define what is effectively the maximum extent of community territories.

While it was undoubtedly true that individual community territories expanded or contracted

over time, the assumption of constant area seems more reasonable than the assumption of

constant density.

2 Data

The datasets we apply our algorithm to come from three regions in the US Southwest:

Central Mesa Verde (CMV), the Northern Rio Grande (NRG), and the Cibola or Zuni

region (CIB) (see Figure 1). The CMV and NRG datasets derive from Phase II of the Village

Ecodynamics Project (Ortman, 2016b; Schwindt et al., 2016). The CIB data derive from data

syntheses produced by Schachner and Peeples (Peeples, 2018; Peeples & Schachner, 2012;

Schachner, 2012). All of these data are now included in cyberSW (Mills et al., 2020). The

distribution of farms and centers is shown in Figure 2. For summaries of the archaeological

and environmental context in each region, see Table 1.

The CMV area encompasses the southwestern corner of Colorado, from Mesa Verde

National Park in the southeast to the Dolores River in the north, and the Utah state line

in the west. The elevation ranges from roughly 1,399.8 m to 3,032.8 m, with an average

elevation of 1,999.0 m (𝜎 = 276.5 m). SKOPE (Bocinsky et al., 2022) estimates suggest

annual precipitation in the CMV study area has averaged around 39.5 cm (𝜎 = 9.1 cm) over

the last 2,000 years, and it puts summer growing degree days for maize around 2,390.1 °F
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Figure 1. Overview map showing the locations of the three study areas: Central Mesa Verde,
Northern Rio Grande, and Cibola. Prominent towns, administrative units, and landforms
are also labeled to help orient the reader.
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(𝜎 = 97.9 °F). Across most areas in the region, it is believed that direct precipitation was

sufficiently high to support dry farming in most years (Bocinsky et al., 2016; Bocinsky &

Kohler, 2014).

The NRG study area in north central New Mexico includes basically all of the Rio

Grande valley between the Jemez Mountains to the west and the southernmost mountains of

the Sangre De Cristos to the east, with the Rio Grande itself running from the northeast down

to the western edge of the valley at the foot of the Pajarito Plateau around Bandelier National

Monument. The elevation ranges from roughly 1,587.9 m to 3,836.2 m, with an average

elevation of 2,220.0 m (𝜎 = 371.3 m). SKOPE estimates the average annual precipitation in

the NRG over the last 2,000 years to be around 40.6 cm (𝜎 = 8.2 cm), and it puts summer

growing degree days for maize around 2,154.4 °F (𝜎 = 102.1 °F). It is argued that direct

rainfall at Bandelier NM made dry farming possible there, but in the valley farming required

floodwater irrigation along watercourses (Bocinsky et al., 2016; Bocinsky & Kohler, 2014;

Duwe & Anschuetz, 2013; Ortman, 2016a).

The CIB region straddles the southern slope of the Colorado Plateau along the border

between Arizona and New Mexico, from El Morro National Monument in the east to the

centrally located Zuni Pueblo to the confluence of Jaralosa Draw and the Zuni River in the

southwest. Although this is a rugged terrain by any reasonable standard, it is notably less

so than the other study areas. The elevation ranges from roughly 1,771.3 m to 2,777.1 m,

with an average elevation of 2,145.9 m (𝜎 = 160.0 m). SKOPE estimates suggest annual

precipitation in the CIB area over the last 2,000 years has averaged around 34.3 cm (𝜎 =

7.6 cm), and it puts summer growing degree days for maize around 2,317.3 °F (𝜎 = 93.8 °F).

However, no area in the region receives sufficient direct rainfall to support dry farming, so

some form of water management was required (Kintigh, 1985; Muenchrath et al., 2002).
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Table 1. Regional Summaries

Area [km2] Dates [CE] Archaeology Environment

CMV 4,566.4 725-1280
Rooms: 68,940
Farms: 5,272
Centers: 170

Precipitation: 39.5 cm (𝜎: 9.1)
Maize GDD: 2,390.1 ∘F (𝜎: 97.9)
Elevation: 1,999.0 m (𝜎: 276.5)

NRG 6,958.0 900-1550
Rooms: 46,226
Farms: 2,316
Centers: 181

Precipitation: 40.6 cm (𝜎: 8.2)
Maize GDD: 2,154.4 ∘F (𝜎: 102.1)
Elevation: 2,222.0 m (𝜎: 371.3)

CIB 7,424.1 700-1540
Rooms: 26,818
Farms: 713
Centers: 77

Precipitation: 34.3 cm (𝜎: 7.6)
Maize GDD: 2,317.3 ∘F (𝜎: 93.8)
Elevation: 2,145.9 m (𝜎: 160.0)

3 Methods

Our clustering algorithm draws inspiration from the procedure used by the United States

Office of Management and Budget to define Core Based Statistical Areas (CBSA) (2020

Standards for Delineating Core Based Statistical Areas, 2021). We start by defining a core

area, in this case a community center location. We then associate outlying areas with their

nearest core area and merge core areas into larger agglomerations based on the proportion

of their populations that they share. Our method may be described as a guided density-

based clustering algorithm in that it does not rely on a random set of points when initialized.

Instead, the selection of core areas is guided by archaeological data and regional expertise.

We think this is a key argument in its favor.

From an archaeological perspective, one can think of our algorithm as combining insights

from Varien (1999b) and Reese et al. (2019), specifically Varien’s idea of a community

catchment, which is an isochrone defined by a uniform commute time in all directions from

a community center, and Reese’s suggestion that a spatial or geographic community can be

identified by grouping individuals in terms of the commute distances between them. Our way

of combining these ideas is to associate farm sites with specific community centers in terms of

their commute distances and then draw the community catchment around those associated
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farms. We also share with them and others (Lipe & Hegmon, 1989; Murdock, 1949; Peterson

& Drennan, 2005) a focus on “geographic” as opposed to “purely social” communities; that

is, communities constrained in space and comprised of individuals that can be expected to

interact on a regular, even daily, basis.

An important difference for our algorithm is that it incorporates information about the

total mass or population size around each center, so it is at least conceptually similar to the

classic Xtent model proposed by (Renfrew & Level, 1979; see also Ducke & Kroefges, 2008),

as well as the more widely known gravity model (Isard, 1954). In broad outline, it has the

following steps:

1. Identify community centers

2. Join farms to their nearest community center

3. Exclude farms beyond a commute time threshold from all centers (𝐷-𝑚𝑎𝑥)

4. Join centers based on their overlapping populations (𝑃 , 𝐷-𝑗𝑜𝑖𝑛)

5. Draw smallest concave hull encompassing all farms, centers, and paths

After step 4, we also apply a filter to remove communities that have less than a minimal

number of dispersed farmsteads, specifically four. Although this is a somewhat arbitrary

threshold, we note that three vertices are the bare minimum required to define a polygon

and measure its area. By removing small communities, we also minimize potential underes-

timates of total arable land area. In addition, our larger ambition is to understand processes

occurring within dispersed farming communities, not necessarily to define all the dispersed

communities that once existed in an area. For community centers with few or no farms,

there is no meaningful dispersed farming community to examine, regardless of whether this

is due to limited survey coverage or actual past behavior, hence our desire to exclude them.

The primary tuning parameters in our algorithm are 𝑃 , the proportion of a community

population used to join communities; 𝐷-𝑗𝑜𝑖𝑛, the commute time required to calculate P; and
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𝐷-𝑚𝑎𝑥, the commute time used to exclude distant farms. While values for these variables

were carefully chosen based on theory and empirical research, we recognize that they are,

at the end of the day, arbitrary selections, so we include some limited sensitivity analysis

to show how changes to these parameters affect the algorithm (see Figure 6). This involves

changing the value of a focal parameter while holding the other parameters at their default

values, which we describe below.

Figure 2. Overview map showing the locations of farmsteads (black dots) and community
centers (red triangles) in Central Mesa Verde, Northern Rio Grande, and Cibola.

3.1 Identify community centers

Rule: Any site, whether residential or otherwise, with known and persistent interaction

between unrelated individuals should count as a community center.

Why persistent interactions? Intuitively, a community center is a place where individ-

uals from different households cross paths with the intention to interact (Berrey et al., 2021;

Glowacki & Ortman, 2012; Varien, 1999b). A simple way to demonstrate that intention is

to show that individuals would still be willing to pay some non-negligible cost to visit those

centers under various counterfactual changes to local conditions. This serves to distinguish

them from merely accidental exchanges or chance encounters. Of course, there can be some
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path-dependence to this process, with locations of ephemeral or one-off encounters coming

to be locations of persistent interaction. The point is that the location will come to be a

community center so long as individuals continue to visit that location despite the underlying

variability in their circumstances.

Why unrelated individuals? The simple answer is that a community is not a family. As

a unit of social organization, it does share something in common with a family, namely, a set

of shared interests; but unlike in a family, those shared interests form only a small part of a

much larger set of potentially conflicting goals and desires. As a consequence, communities

are more susceptible to problems of coordination or collective action (Smith, 2003; Smith,

2010). On the other hand, the mere existence of a community center implies some level of

coordination - even if that coordination is just about the location of the community center

itself! So, community members share less in common than families, but more in common

than a purely random sample of the larger population.

We can summarize these ideas by noting that persistent interactions at a location make

that location a center, and persistent interactions between unrelated individuals at that

location make it a community center (Gilpin, 2003; Peterson & Drennan, 2005; Stone, 2016;

Varien & Potter, 2008). To make these considerations more useful for defining community

boundaries, however, we need to operationalize them, to make them applicable to specific

archaeological contexts, and that requires a deeper understanding of the archaeology in

those contexts. For given differences in population density and settlement patterning, the

frequency and intensity of interaction between individuals at centers is likely to vary by

region, so it is reasonable to expect that community centers themselves (at least in so far as

they play the role of centers) should vary in their size and composition across regions, too.

For the two regions represented by the VEP II dataset, we rely on two different but

related sets of criteria to identify community centers. In the Central Mesa Verde area, a
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site is considered a community center if it includes civic architecture, specifically a great

kiva or great house, or eight or more pit structures (small kivas) representing eight or more

households. In the Northern Rio Grande, a site counts as a community center if it is classified

as a village (a site with 50 or more rooms) or town (a site with 500 or more rooms). In the

Cibola region, a community center includes at least 50 rooms or civic architecture. The large

number of households in these regions are thought to be too large to be plausibly related by

reckoned kinship.

3.2 Join farms to their nearest community center

Rule: For each farm, assign it to the community of its nearest community center.

Following Reese et al. (2019), we define nearness or proximity in terms of commute time

rather than linear geographic distance. This is done for the obvious reason that the primary

opportunity cost associated with daily pedestrian movement is the time spent walking, during

which other productive activities cannot take place. There is also a much stronger cross-

cultural regularity in the length of time individuals devote to commuting than the distance

covered, as the latter is a function of the speed of movement, which is influenced by transport

technology (Marchetti, 1994). As a result, both the frequency and intensity of interaction

at community centers should decay with commute time. The longer it takes to get to a

community center, the less frequent and less intense the interactions at that center should

be (Peterson & Drennan, 2005; Varien, 1999b).

While different constraints will naturally arise for different modes of transportation,

leading to differences in both the routes taken and the speed and distance covered, for the

populations considered here the only available mode of transportation was pedestrian. The

biggest obstacle to interaction was thus the landscape itself, in particular its topography -

intuitively, the steeper the uphill slope, the slower the hiking speed, the longer the commute

time. So, all else being equal, individuals at a farm that is equidistant (in terms of geographic
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distance) between two community centers should prefer traveling to the one separated by

less rugged terrain.

Commute time is a critical variable in many places in our algorithm, but as a first

approximation, we incorporate the idea by simply joining farms to the community of their

nearest center, meaning the center with the shortest commute time from the farm. For details

of how we estimate commute times over costly terrains, see “Least-cost path analysis,” below.

3.3 Exclude distant farms

Rule: Exclude all farms farther than commute time, 𝐷-𝑚𝑎𝑥, from their nearest center.

The commute time threshold, 𝐷-𝑚𝑎𝑥, defines an isochrone around each community

center. All farm sites that fall outside that isochrone are considered outliers and dropped

from the analysis. Doing this helps to minimize potential overestimates of total arable land

area for each community. This is owing to the fact that distant farms on average add more

area to the community polygon than nearer farms. Here, we have defined 𝐷-𝑚𝑎𝑥 as one

hour. This is about twice the median daily commute time observed in cross-cultural studies

and it includes roughly 95% of the farmsteads in each region (see Figure 4).

3.4 Join centers with overlapping neighbors

Rule: For any two centers 𝑐 and 𝑑 with populations 𝑁𝑐 < 𝑁𝑑, if 𝑃 ⋅ 𝑁𝑐 is within distance

𝐷-𝑗𝑜𝑖𝑛 of 𝑑, then 𝑐 is part of the same community as 𝑑.

The larger and more dense farming populations become, the harder it gets to tell them

apart and, more importantly, the harder it gets to justify keeping them apart, so we need

to articulate a rule that specifies when two communities should be merged into one. For

CBSAs, that decision hinges on a distinction between central and outlying counties, or

counties where some fraction of the population live in an urban core and counties where

some fraction commute to and from a central county on a regular basis. Basically, if the
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central counties of one CBSA qualify as the outlying counties of another CBSA, then the

two CBSAs are merged. The intuition here is that when rates of interaction and exchange

between CBSAs are roughly equal to rates within a CBSA, the CBSAs should be merged

(2020 Standards for Delineating Core Based Statistical Areas, 2021).

We carry that intuition over to our merger rule for dispersed maize farming communi-

ties, albeit with some modification to account for the fact that we are working with point

locations rather than administrative boundaries. We assume that if some proportion, 𝑃 , of

the population related to one community center lives within a certain commute time, 𝐷-𝑗𝑜𝑖𝑛,

of another community center, that those two community centers are effectively parts of the

same dispersed community. We do this in the direction of letting larger communities absorb

smaller ones.

Here we operationalize the population size 𝑁 of center 𝑐 using the well-established rule

of thumb in US Southwest archaeology that each surface room in a settlement represents a

single person, leading to a one to one conversion from rooms to residents (Duwe et al., 2016;

Kintigh, 1985; Lekson, 1989; Lipe, 1989; Ortman, 2016b). In this case, we use the catchment

room count, meaning the number of rooms within 𝐷-𝑗𝑜𝑖𝑛 of 𝑐, defined as:

𝑁𝑐 =
𝑆

∑
𝑖=1

𝑅𝑖 ⋅ 𝐼(𝑡𝑖𝑐 ≤ 𝐷-𝑗𝑜𝑖𝑛)

for all sites 𝑆 (including both farms and centers), with 𝑅𝑖 being the room count at site 𝑖, 𝑡𝑖𝑐

the travel time from 𝑖 to 𝑐, 𝐷-𝑗𝑜𝑖𝑛 the threshold travel time to a center, and 𝐼 the indicator

function that is 1 if 𝑡 ≤ 𝐷-𝑗𝑜𝑖𝑛 and 0 otherwise. Note that 𝑆 includes 𝑐 and that 𝑡𝑐𝑐 = 0

(the travel time from a center to the same center is precisely 0), so 𝑅𝑐 is always included in

𝑁𝑐.

The catchment room count within 𝐷-𝑗𝑜𝑖𝑛 of two centers 𝑐 and 𝑑 is then
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𝑁𝑐𝑑 =
𝑆

∑
𝑖=1

𝑅𝑖 ⋅ 𝐼(𝑡𝑖𝑐 ≤ 𝐷-𝑗𝑜𝑖𝑛) ⋅ 𝐼(𝑡𝑖𝑑 ≤ 𝐷-𝑗𝑜𝑖𝑛)

and

𝑃𝑐𝑑 = 𝑁𝑐𝑑/𝑁𝑐

so we could also state our join rule as: if 𝑃𝑐𝑑 ≥ 𝛼 for some critical threshold 𝛼, then 𝑐 is

part of the same community as 𝑑. This promotes joins when 𝑐 and 𝑑 are themselves in close

proximity to each other, as the farther apart they are, the smaller the number of sites that

overlap within 𝐷-𝑗𝑜𝑖𝑛. It also tends to encourage joining two communities when a substantial

proportion of the population lives between the two centers. In either case, the result is what

Varien (1999b) sometimes refers to as a “macro-community” or “multi-community cluster,”

meaning a community organized around multiple community centers.

The rule was partly inspired by the density-based clustering algorithm known as DB-

SCAN (Ester et al., 1996), as we rely on a moving window (an isochrone, in this case) set

around each center, and look for some measure of density to guide join decisions. As noted

above, however, our method does not rely on a random initialization of points, but rather

targets community centers. It is also hierarchical in the sense that it exploits additional

structure in our data, namely the distinction between community centers and farm sites.

An important obstacle to estimating population is that room counts cannot always be

directly measured. For many sites in the CMV, pit structures or small kivas are more reliably

identified than surface rooms. Fortunately, each pit structure is typically the central roofed

space of a unit pueblo residence that includes an average of six surface rooms (Adler, 1990),

so we simply multiply the number of pit structures by six to obtain room estimates for each
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site. CIB and NRG sites all have room estimates, so no additional assumptions are made

about them.

For this analysis, we specify 𝐷-𝑗𝑜𝑖𝑛 to be one half hour and 𝑃 to be 0.8. We acknowledge

that these values are somewhat arbitrary. In their defense, they set an extremely high bar,

so joining centers that satisfy the rule seems reasonable.

3.5 Draw community boundary

Rule: For each community, draw a polygon that encompasses all farms, community centers,

and commute paths using a concave hull.

So far, we have only grouped site points into clusters or communities. The goal, however,

is to define their spatial extent. That means, for each set of site points, we need some way

of drawing a polygon that encompasses all of them. This can be done in a number of

ways. The simplest strategy would be to find the centroid of the set of points and draw a

circle with the smallest radius that still includes them all. This would be utterly arbitrary,

however, and frankly unrealistic, not representing any sort of meaningful boundary given

the landscape. An alternative would be to use the convex hull of the set of points, but

this tends to exaggerate the total area of the community, especially when the distribution

of points is suggestive of a concave shape, like the letter ‘C’. A concave hull would handle

peculiar shapes, but it would also introduce the opposite problem, restricting the area of the

community to an unreasonable degree. Our somewhat brute force way of balancing these

factors is to identify paths with shortest commute times between the outer most farms in a

community, extract the vertices from those paths, and then incorporate those into the set of

points used to define the concave hull. The result is a polygon that is concave as well in the

dimension of time, meaning the paths with shortest commute times between any two farms

never leave the community.
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In some cases, this may lead to overlapping community boundaries, though the amount

of overlap should be minimal given the way that we cluster points, particularly when there

are many densely distributed points. To some extent, of course, this sort of overlap is both

unavoidable and expected as even in the modern world there are disagreements about the

exact locations of legal and political boundaries.

As a final gloss on community boundaries, we also dilate each concave hull, briefly

expanding it with a positive buffer, then shrinking it with a negative buffer having a slightly

smaller size. This should have only a minimal effect on the total area of each polygon and

also serves to smooth out noise along the edges.

3.6 Least-cost path analysis

The key to our path analysis is to take information about the terrain in our study regions and

convert it first into meaningful estimates of hiking speed and then into meaningful estimates

of travel time. Fortunately, attempts to model hiking speed across a range of slopes have

advanced considerably in recent years, most notably in Campbell et al. (2019). Drawing on

a large, crowd-sourced fitness tracker data set consisting of approximately 420,000 individual

hikes, jogs, and trail runs from nearly 30,000 individuals in Salt Lake City, UT, Campbell et

al. (2019) offer what is easily the most empirically robust estimate of hiking speed to date.

Our application of Campbell’s hiking function relies on coefficients from the fifth percentile

of individuals in their sample, using the Cauchy (or Lorentz) distribution as recommended

by Campbell, and assumes that everyone in the areas of our analysis were largely equal in

their walking speed and endurance. This makes their walking speeds comparable to, but not

the same as, what would be estimated by Tobler’s hiking function (Tobler, 1993).

To calculate travel or commute times, we first download a 1 Arc-second digital elevation

model (DEM) for each study area from the US Geological Survey (2023) 3D Elevation

Program and convert it into a graph with each node representing a grid cell and each edge
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representing a straight line between adjacent grid cells in the Moore neighborhood (the

eight adjacent grid cells). The degree slope of each edge is calculated, and edges with slope

estimates greater than or equal to 45 degrees are removed. This prevents the path analysis

from assuming that a hypothetical hiker would, for instance, scale steep slopes or walk off

a cliff. The remaining slope estimates are then fed to Campbell’s hiking function to derive

estimates of hiking speed along each edge. The inverse of the hiking speed (the pace) is then

multiplied by the distance along that slope to estimate travel time.

Next, we associate each farm and community center with the grid cell that contains its

centroid. In effect, we treat all the sites falling into a grid cell as a single site. We then

apply Dijsktra’s algorithm to the entire set of nodes with associated sites. This gives us

two datasets: (i) a dense distance matrix with least cost travel-times from all farms and

community centers to all farms and community centers and (ii) a set of linestring geometries

whose vertices are the grid cells traversed on shortest paths. For simplicity, we average

travel times to and from each origin and destination point, thus making the distance matrix

symmetric. All of the clustering steps in our algorithm are implemented as operations on

this matrix.

Importantly, the original resolution of the gridded data is ~30 m, but we aggregate grid

cells by a factor of 3, taking the mean in all cases, and making them closer to ~90 m in

resolution. Aggregation is a familiar speed-up technique for least-cost analysis on large grids

containing tens of millions of cells, though it is not without its risks (Cushman & Landguth,

2010; Doyle et al., 2012; Etherington, 2016), so we also conduct some limited sensitivity

analysis with varying grid resolutions, which are reported below (see also Figure 6).

All analyses, including the cost-distance modeling and our implementation of the algo-

rithm, are conducted in the R programming language and environment (R Core Team, 2023).
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For more details, please see Supplementary Materials, which include all code necessary to

reproduce these analyses and the figures in the text.

4 Results

The goals of this analysis are (i) to identify dispersed farming communities based on the dis-

tribution of farmsteads and their proximity to community centers and then (ii) to regionalize

those communities by giving them meaningful boundaries. This was done by developing a

simple algorithm inspired by the concept of a CBSA combined with previous work by Varien

(1999b) and Reese et al. (2019). Using parameter values 𝐷-𝑗𝑜𝑖𝑛 = 30 minutes, 𝐷-𝑚𝑎𝑥 =

1 hour, and 𝑃 = 0.8, our algorithm identified 104 communities in CMV, 90 communities

in NRG, and 45 communities in CIB (see Figure 3). The number of communities removed

because they included an insufficient number of sites was 4 for CMV, 35 for NRG, and 23

for CIB, leaving 100, 55, and 22 communities with definable spatial extents.

The mean areas of these communities are 8.68 km2 in CMV, 6.06 km2 in NRG, and

7.19 km2 in CIB; the mean room counts (for all community centers and farms) are 647.76

in CMV, 593.49 in NRG, and 766.68 in CIB; and the mean room densities are 99.69 rooms

per km2 in CMV, 219.77 rooms per km2 in NRG, and 238.76 rooms per km2 in CIB. We

emphasize that the means in several cases deviate to a considerable degree from median

values (denoted in Table 2 with the Greek letter 𝜂), indicating skew in the data and the

potential presence of large outliers. This is illustrated in the boxplots in Figure 5, which

show the distributions of these and other variables of interest that can be derived from our

analysis and also used to evaluate its merits (see also Table 2). Note that these summaries

are time-insensitive. They represent the total archaeological sample in each region.

In addition to showing the community polygons, Figure 3 also offers a simple demo-

graphic profile for each region based on the spatial distribution of all rooms (their count per

18



Figure 3. Map showing the size, shape, and spatial distribution of community polygons.
Color represents the log density of rooms (the number of rooms per square kilometer), with
lighter colors indicating lower values and darker colors indicating higher values. Note that
densities in each region were re-scaled to have the same range, so this figure cannot be used
to evaluate absolute differences between regions!

square kilometer) across communities irrespective of time period. For visualization purposes,

the log of the density is used, as it helps to normalize the distribution and, in particular, to

rein in large outliers that swamp the variance. It is important to note, too, that values in

each region are re-scaled to be in the same range, so the figure cannot be used to estimate

absolute differences between regions. Still, the relative differences within each region can be

enlightening, though even they must be interpreted with caution.

Not surprisingly, virtually all of the Mesa Verde NP communities show high densities.

The community that includes Goodman Point and Sand Canyon Pueblo just north of Ute

Mountain also has a relatively high density, as do several of the communities west of Yellow

Jacket and along the Dolores River. In the NRG, the highest density community is near the

center of the region. It juts out from the Rio Grande at its confluence with the Pojoaque

River and includes the San Ildefonso and Pojoaque pueblos. Another high density community

lies in a shallow north-south canyon at the base of the Sangre de Cristos. Additional high

density communities are observed on the Pajarito Plateau in Bandelier NM. In the CIB area,
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Table 2. Community Summaries

Area
(sq.km)

Rooms
(N)

Farms
(N)

Centers
(N)

Commute
(mins)

Room Density
(N/sq.km)

CMV
𝜂
𝜇
𝜎

: 7.1
: 8.68
: 6.73

: 402
: 647.76
: 701.36

: 24.5
: 44.38
: 55.86

: 1
: 1.65
: 1.37

: 22.35
: 23.28
: 8.83

: 57.49
: 99.69
: 97.36

NRG
𝜂
𝜇
𝜎

: 5.53
: 6.06
: 4.56

: 479
: 593.49
: 444.7

: 20
: 36.73
: 34.96

: 2
: 2.49
: 2.06

: 19.12
: 19.04
: 8.77

: 99.43
: 219.77
: 450.86

CIB
𝜂
𝜇
𝜎

: 4.37
: 7.19
: 7.39

: 492
: 766.68
: 626.09

: 13.5
: 24.14
: 25.34

: 2
: 2
: 1.11

: 21.16
: 24.74
: 12.27

: 170.25
: 238.76
: 270.64

𝜂: median, 𝜇: mean, 𝜎: standard deviation

the three densest communities can be found in the far eastern edge of the study area near

El Morro NM, with additional dense communities near Ramah just to the west of El Morro,

southeast of Zuni near the center of Cibola, and south of Manuelito in the northwest.

Results of the sensitivity analysis are as expected given the role that the main tuning

parameters play in the algorithm (see Figure 6). Increasing 𝐷-𝑗𝑜𝑖𝑛 makes it easier to join

two communities, thus leading to growth in the total area of communities and declines in the

total number of resulting communities. Increasing 𝑃 makes it harder to join communities,

thus leading to fewer and smaller communities. Increasing 𝐷-𝑚𝑎𝑥 increases the total area

of communities and the average commute time to centers as it serves to filter out distant

farmsteads. Importantly, finer-grained grid resolutions had no meaningful impact on the

results of this analysis, so the level of aggregation we chose appears acceptable. One puzzling

result is that the CIB region shows some volatility in its room densities with respect to the

main tuning parameters. The number of CIB communities is also largely invariant. We

comment on this in the discussion.
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5 Discussion

Our approach offers several advantages over previous efforts to define dispersed community

territories. First, it handles variation in survey coverage by seeking to define communities

we have evidence for, rather than all communities that may once have existed. Second, it

handles variation in the degree to which surveyors have lumped or split architectural remains

in defining sites (Kintigh, 2003). This is a special problem in the CMV. The tradition of

site survey recording within Mesa Verde National Park has generally involved treating each

room block as a separate site, even when there is a continuous artifact scatter between

them. Outside of the park, however, the tradition has been to include all room blocks within

a single artifact scatter as part of a single site. Because our method incorporates room

count estimates, it is robust to these differences in site definition, enabling properties of the

resulting communities to be compared more directly across these areas. Finally, our method

focuses on travel time, a strong regularity in human affairs, and can be applied to landscapes

with dramatically different topographies. The resulting community territories take obvious

natural topographic barriers to interaction into account, but also allow territories to cross

such boundaries when this is suggested by the data themselves.

Because our algorithm requires that we calculate the commute time between each farm

and community center, we can also evaluate potential spatial - strictly, commute time -

interactions between them. Figure 4 illustrates this idea by showing the difference between

(i) the log probability density of commute times from observed farms to their nearest centers

and (ii) the log probability density of commute times from random locations to their nearest

centers, along with the 95% quantiles of the observed distributions. This is analogous to

what Reese et al. (2019) refer to as the “null difference cost distance.” One can interpret

it as showing where commute times differ from what one might expect if farm sites were

distributed randomly across the landscape. Values larger than zero indicate that there are
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Figure 4. Figure shows the difference between the log density of commute times (in minutes)
from observed farms and random locations to the nearest community center for each region,
along with the location of their 95% quantile (for observed farms, not random points).

more farms located at those commute times from centers than you would expect by chance.

Conversely, values less than zero indicate that there are less farms located at those locations

than one might expect by chance. In either case, these differences tell us that there is

positive covariance between farmsteads and nearby centers at commute times of less than

approximately one hour (the value we assigned to 𝐷-𝑚𝑎𝑥).

The shapes of the density curves are not, however, identical. We attribute this to

three factors: sampling intensity, local topography, and regional settlement patterning. For

instance, the spike in the CIB region at or around the 30 minute point along with the longer

tail (and the larger 95% quantile) is at least partially owing to the fact that block survey in

that area is limited to a few disconnected locations. The area is also much flatter than in the

CMV and NRG regions, making the background commute distribution much more uniform,

at least within the surveyed areas.

Perhaps more interesting though is the fact that these regions represent different set-

tlement patterns over different periods of time. In the CMV area, the pattern of settlement

was largely one of growth and dispersal, with local populations reaching an asymptote after
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Figure 5. Figure shows for each region the distribution of relevant variables across commu-
nities. Note that these are time-insensitive distributions of the samples in each region.
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which they spread out into neighboring areas (Schwindt et al., 2016). Nearly all centers

in the CMV area arose within farming clusters, but they were relatively small compared to

those in the other study areas, and occurred only to a limited degree in the period leading up

to the Great Drought in 1280 CE (and to a lesser degree the period leading up to and includ-

ing much of the 10th century), with no large aggregations occurring afterwards (Glowacki

& Ortman, 2012; Ortman, 2016a; Varien, 1999b). In the NRG region, communities had a

few dispersed farms early on, more in the period immediately following 1280 (mostly con-

centrated in the northern Pajarito Plateau, the area of Bandelier NM), and then very large

aggregations after that (Ortman, 2016b, 2016a). As suggested by the relatively small ratio

of farms to centers (see Figure 5), communities in the CIB region had almost no dispersed

farming for most of the sequence, with only an abbreviated phase of dispersed settlement

that quickly morphed into large aggregations as populations surged in the period after 1280

(Kintigh, 1985; Peeples, 2018; Schachner, 2012). As in the CMV area, aggregations in the

NRG and CIB regions sometimes developed within dispersed farming communities, but un-

like in the CMV, many also seem to have been established after 1280 CE in areas away from

where dispersed farms had been previously located (Ortman, 2016a; Schachner, 2015).

These settlement patterns explain why our algorithm dropped 23 communities in the

CIB region, 35 in the NRG, but only 4 in the CMV. Many of the CIB community centers

are simply too isolated from farmsteads for our algorithm to define a meaningful extent.

Settlement patterning probably also explains the volatile response of the CIB communities

to changes in the tuning parameters, as the small number of farms means small changes are

just enough for communities to add or drop community centers that are excluded by our

main analysis.

This is perhaps the biggest limitation of our algorithm. It cannot define community

boundaries when the relationship between community centers and dispersed farms is not
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obvious, either because centers are geographically isolated from farms or because there is an

insufficient number of farms to serve as a bridge between centers. We note, however, that our

concept of a community center does not technically require the presence of an archaeological

site. Community center sites are just a clear signal of the locations of persistent interaction

in the archaeological record.

Figure 6. Figure shows results of sensitivity analysis, focusing on three main parameters
(𝐷-𝑗𝑜𝑖𝑛, 𝐷-𝑚𝑎𝑥, and 𝑃 ) and approximate grid resolution. Measures of some key outcomes
are also shown, including the number of communities, their total area, room density, and
average commute time from farms to the nearest community center.
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Archaeologists and anthropologists have investigated various dimensions of community

organization and the types of communities they foster. Examples include biological com-

munities organized around genetic relatedness or physical similarities (Becker & Juengst,

2017; Blom, 2005, 2017; Kakaliouras, 2017), imagined or ideational communities organized

around perceived membership and metaphors (sometimes called styles of imaginings; Ander-

son, 1983; Isbell, 2000; Ortman, 2011), reproductive communities organized around mating

opportunities (Kolb & Snead, 1997; Mahoney et al., 2000), religious communities organized

around a shared sense of the sacred (Bernardini, 2004; Malville & Malville, 2001), linguis-

tic communities organized around a shared grammar and vocabulary (Gumperz, 1968; Sil-

verstein, 1998), even sight communities organized around a shared set of visually striking

landmarks (Bernardini & Peeples, 2015). In fact, there are probably as many types of com-

munities as there are types of things for people to care about.

Because the type of community we aim to delineate is a dispersed farming community,

we structure our algorithm around the dimensions of food production, travel time, and social

interaction, as these are major constraints on settlement for subsistence farmers (Bocinsky et

al., 2016; Bocinsky & Kohler, 2014; Vernon et al., 2022, in press; Yaworsky et al., 2023). To

give just one example, our algorithm suggests that 50% of CMV communities offer anywhere

from 15-50 hectares per farm. For the CIB and NRG regions, the corresponding figures are

25-45 and 15-35 hectares per farm, respectively. This means that farms in all three areas

meet the 14 hectare threshold required for a household to subsist on maize in these regions

(Benson, 2011; Bocinsky & Varien, 2017; Reese et al., 2019). And that is before taking into

account that the area of the community is held fixed (pace Reese et al., 2019) and all sites

are used regardless of time period, so the derived ratios of land to farms represent minimum

possible levels, not the levels actually experienced by farmers in these communities at any

given time.
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6 Conclusion

In this paper, we develop an algorithm that leverages the difference between farmsteads

and community centers to cluster sites into dispersed farming communities and define their

boundaries. This was inspired by the concept of a CBSA, along with important contribu-

tions from Varien (1999b) and Reese et al. (2019). This algorithm allows us to capture and

compare the changing properties of both dispersed and aggregated communities using consis-

tent measurements. For instance, we can use uniform probability density analysis of pottery

assemblages from each site (Ortman, 2016b) to apportion rooms to time slices and thus es-

timate changes in population density through time. The ability to compare these properties

for communities of varying scales and densities is crucial for evaluating their relative costs

and benefits for human welfare.
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